Каузальный анализ на основе концептов¶
Ссылка на руководство пользователя
A tool for extracting and analyzing causal concepts from tabular datasets.
This class provides methods to cluster data, evaluate discriminability of clusters, extract concept definitions, and estimate causal effects on different outcomes.
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
|
calculate_confidence_uncertainty(X, y, clf)
staticmethod
¶
Calculate model confidence and aleatoric uncertainty using DataIQ.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Feature matrix. |
required |
y
|
Series | ndarray
|
Target labels or values. |
required |
clf
|
ClassifierMixin | BaseEstimator
|
A trained classifier that supports predict_proba or similar. |
required |
Returns:
Type | Description |
---|---|
tuple
|
A tuple (confidence, aleatoric_uncertainty) containing: - confidence: Model confidence scores. - aleatoric_uncertainty: Aleatoric uncertainty scores. |
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
estimate_causal_effects(D_c)
staticmethod
¶
Estimate the causal effect of each concept on a binary outcome.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D_c
|
DataFrame
|
DataFrame where columns are concepts plus the outcome 'L_f' (binary). |
required |
Returns:
Type | Description |
---|---|
dict
|
Dictionary of concept names to their estimated coefficients (logistic regression). |
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
estimate_causal_effects_on_continuous_outcomes(D_c, outcome_name)
staticmethod
¶
Estimate causal effects on continuous outcomes using econML's LinearDML or CausalForestDML.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D_c
|
DataFrame
|
DataFrame where columns include concepts and a continuous outcome. |
required |
outcome_name
|
str
|
Name of the continuous outcome column. |
required |
Returns:
Type | Description |
---|---|
dict
|
Dictionary of concept names to their estimated causal effect on the outcome. |
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
evaluate_discriminability(D, N, clusters, auc_threshold, k_min_cluster_size, random_state=42)
staticmethod
¶
Evaluate discriminability of clusters using an SVM and AUC.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D
|
DataFrame
|
The discovery dataset, expected to include an 'index' column. |
required |
N
|
DataFrame
|
The negative (natural) dataset, expected to include an 'index' column. |
required |
clusters
|
ndarray
|
Cluster labels from perform_clustering. |
required |
auc_threshold
|
float
|
A threshold for AUC to consider a cluster discriminative. |
required |
k_min_cluster_size
|
int
|
Minimum cluster size for evaluation. |
required |
random_state
|
Seed for splitting and SVC |
42
|
Returns:
Type | Description |
---|---|
list
|
A list of dictionaries containing information about discriminative clusters. |
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
extract_concept_meanings(D, cluster_concepts, original_data)
¶
Extract the meanings (dominant features) of each concept.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D
|
DataFrame
|
Preprocessed discovery dataset with an 'index' column. |
required |
cluster_concepts
|
list
|
List of discriminative cluster dictionaries. |
required |
original_data
|
DataFrame
|
Original dataset (before one-hot encoding). |
required |
Returns:
Type | Description |
---|---|
dict
|
A dictionary mapping concept names to their selected features and values. |
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
extract_concepts(D, N, auc_threshold=0.7, k_min_cluster_size=100, max_clusters=10, max_iterations=10)
¶
Extract concepts from a discovery dataset.
Clusters the dataset incrementally and looks for discriminative clusters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D
|
DataFrame
|
Discovery dataset with an 'index' column. |
required |
N
|
DataFrame
|
Negative (natural) dataset with an 'index' column. |
required |
auc_threshold
|
float
|
Threshold for AUC to declare a cluster discriminative. |
0.7
|
k_min_cluster_size
|
int
|
Minimum cluster size for evaluation. |
100
|
max_clusters
|
int
|
Maximum number of clusters to attempt. |
10
|
max_iterations
|
int
|
Maximum iterations for incremental clustering. |
10
|
Returns:
Type | Description |
---|---|
list
|
A list of discriminative cluster dictionaries. |
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
generate_concept_space(X, cluster_concepts)
staticmethod
¶
Generate a binary concept space from the given cluster concepts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
The entire preprocessed dataset. |
required |
cluster_concepts
|
list
|
A list of discriminative cluster dictionaries. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A DataFrame with binary columns indicating concept membership. |
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
perform_clustering(D, num_clusters, random_state=42)
staticmethod
¶
Perform KMeans clustering on the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D
|
DataFrame
|
The dataset for clustering (without index column). |
required |
num_clusters
|
int
|
The number of clusters to form. |
required |
random_state
|
Seed for KMeans. |
42
|
Returns:
Type | Description |
---|---|
ndarray
|
Array of cluster labels. |
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
plot_tornado(effects_dict, title='Tornado Plot', figsize=(10, 6))
staticmethod
¶
Visualize causal effects using a tornado plot.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
effects_dict
|
dict
|
Dictionary of {concept: effect_size} |
required |
title
|
str
|
Title for the plot |
'Tornado Plot'
|
figsize
|
tuple[int, int]
|
Figure dimensions |
(10, 6)
|
Source code in applybn/explainable/causal_analysis/concept_causal_effect.py
select_features_for_concept(concept_data, other_data, features, original_data, lambda_reg=0.1)
staticmethod
¶
Select features for a concept and extract value ranges or categories.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
concept_data
|
DataFrame
|
Data points belonging to the concept. |
required |
other_data
|
DataFrame
|
Remaining data points not in the concept. |
required |
features
|
list
|
List of feature names in the preprocessed dataset. |
required |
original_data
|
DataFrame
|
Original dataset (before one-hot encoding). |
required |
lambda_reg
|
float
|
Regularization parameter to penalize variance or overlap. |
0.1
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary mapping features to their type and range/categories. |