Каузальный анализ на основе вмешательств¶
Ссылка на руководство пользователя
Source code in applybn/explainable/causal_analysis/intervention_causal_effect.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
__init__(n_estimators=10)
¶
Initialize the ModelInterpreter.
Attributes:
Name | Type | Description |
---|---|---|
n_estimators |
Number of estimators for Data-IQ. |
Source code in applybn/explainable/causal_analysis/intervention_causal_effect.py
compute_confidence_uncertainty_test(X, y)
¶
Compute model confidence and aleatoric uncertainty on test data using Data-IQ.
compute_confidence_uncertainty_train(X, y)
¶
Compute model confidence and aleatoric uncertainty on training data using Data-IQ.
estimate_feature_impact(X, random_state=42)
¶
Estimate the causal effect of each feature on the model's confidence using training data.
Source code in applybn/explainable/causal_analysis/intervention_causal_effect.py
interpret(model, X_train, y_train, X_test, y_test)
¶
Run the full interpretation process.
Source code in applybn/explainable/causal_analysis/intervention_causal_effect.py
perform_intervention(X_test, y_test)
¶
Perform an intervention on the top 5 most impactful features in the test data and observe changes.
Source code in applybn/explainable/causal_analysis/intervention_causal_effect.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|
plot_aleatoric_uncertainty(before_intervention=True)
¶
Plot aleatoric uncertainty for test data before and after intervention.
Source code in applybn/explainable/causal_analysis/intervention_causal_effect.py
plot_top_feature_effects(top_n=10)
¶
Plot a bin plot of the top N most impactful features with their causal effects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_n
|
int
|
Number of top features to plot. |
10
|
Source code in applybn/explainable/causal_analysis/intervention_causal_effect.py
train_model(model, X, y)
¶
Train the model on the training data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
BaseEstimator | ClassifierMixin
|
The model to train |
required |
X
|
Training data |
required | |
y
|
Training labels |
required |